Geschichte
Es befinden sich bereits vier Reaktoren in Japan in Betrieb (Kashiwazaki-Koriwa 5+6, Hamaoka 5 und Shika 2), und drei weitere in Bau (Shimane und Langmen 1+2 in Taiwan). Die beiden ersten Reaktoren Kashiwazaki gingen 1996 und 1997 nach nur 36 Monaten Bauzeit (vom ersten Beton bis zur Beladung) ans Netz. Es ist in Anbetracht der vertrackten Situation in Grossbritannien daher nicht verwunderlich, daß man sich für den Bau von je drei Reaktoren in Wylfa Newyd und Oldbury-on-Severn durch das Horizon-Konsortium stark macht. Allerdings ist das Genehmigungsverfahren noch nicht abgeschlossen, sodaß man erst von einer Inbetriebnahme in der ersten Hälfte des nächsten Jahrzehntes ausgehen kann. Gleichwohl ist der Zeitdruck für erforderliche Neubauten scheinbar so groß geworden, daß man noch dieses Jahr mit der Baustellenvorbereitung beginnen will, damit man nach Erhalt aller Genehmigungen (erwartet 2018/2019) unverzüglich mit dem nuklearen Teil beginnen kann. Grundsätzliche Schwierigkeiten werden nicht gesehen, da die Genehmigungen für die USA, Japan und Taiwan bereits vollständig vorliegen und auf praktische Betriebserfahrungen seit 1996 in Japan verwiesen werden kann. Es sind lediglich die besonderen Erfordernisse der EU (insbesondere Flugzeugabsturz) einzuarbeiten und die "Post-Fukushima-Erfordernisse" nachzuweisen. Es könnte durchaus sein, daß dieser Reaktortyp (UK-ABWR) noch in ganz Europa auf die Überholspur geht.
Warum Siedewasserreaktoren?
Wenn man ein großes Kraftwerk bauen will, bleibt praktisch nur der Dampfkreislauf. Wasser wird unter hohem Druck verdampft und verrichtet in einer Turbine Arbeit, durch die ein Generator angetrieben wird. Wenn man ohnehin Wasser als Arbeitsmittel für die Turbine braucht, warum nicht auch gleich als Arbeitsmittel (Kühlung und Moderator) im Reaktor einsetzen? Wenn man nun noch den Dampf in einem "einfachen Kessel" durch Kernspaltung erzeugt, hat man einen Siedewasserreaktor. Einfacher geht nicht. Allerdings ist eine solche Konstruktion wegen der großen freien Flächen als Schiffsantrieb gänzlich ungeeignet. Bei einem stampfenden und rollenden Schiff im Seegang, hätte man bereits Probleme überhaupt eine vernünftige Regelung zu konzipieren. Zuerst war aber der Drang nach einem U-Boot, für das man den Druckwasserreaktor erschaffen mußte. Einmal fertig entwickelt -- staatliche Förderung oder der Krieg ist der Vater aller Dinge -- konnte man ihn schnell zu einem konventionellen Kraftwerk umstricken.
Bei der Diskussion von Vor- und Nachteilen beider Konzepte, wird von Laien oft der "nicht radioaktive Sekundärkreislauf" als zusätzlicher Sicherheitsvorteil des Druckwasserreaktors angeführt. Beide Kreisläufe sind durch die Rohre in den Dampferzeugern physikalisch voneinander getrennt. Wasser -- als H2O -- wird durch die Neutronen im Reaktor angegriffen: Teilweise zerschlagen sie die Moleküle in Wasserstoff und Sauerstoff (Wasserchemie und Korrosion) und teilweise fangen die Atome mit den ihnen charakteristischen Wahrscheinlichkeiten auch Neutronen ein und wandeln sich dadurch um. Unter den Gesichtspunkten des Strahlenschutzes ist hierbei die Umwandlung von Sauerstoff in radioaktiven Stickstoff die übelste Variante. Die gebildeten N-16-Atome zerfallen mit einer Halbwertszeit von 7,13 s wieder in Sauerstoff und senden dabei eine γ-Strahlung von 10,4 MeV aus. Für den Arbeitsschutz ist das jedoch kein besonderes Problem, wenn man die Dampfleitungen und die Turbine mit einer entsprechenden Abschirmung versieht. Selbst bei einem Schaden an den Brennelementen können nur gasförmige Spaltprodukte in den Dampf gelangen -- ist doch gerade die Verdampfung ein probates Mittel zur Reinigung von Flüssigkeiten. Aus den Jahrzehnten Betriebserfahrung weltweit, hat man genug Erfahrungen gesammelt und Gegenmaßnahmen entwickelt. So ist beispielsweise das Spülen der Kondensatoren mit Frischluft vor Wartungsarbeiten, ein Mittel, die Belastung der Arbeiter z. B. durch radioaktives Jod drastisch zu senken. Heute liegen Siedewasserreaktoren auf den untersten Plätzen bei der gemessenen Strahlenbelastung. Schließlich gilt auch hier wieder der Grundsatz: Je weniger vorhanden ist, desto weniger muß repariert und gewartet werden.
Der ABWR ist der Porsche unter den Kraftwerken
Die momentane Leistung eines Leichtwasserreaktors hängt im Betrieb von der Dichte des Wassers ab. Je höher die Dichte ist, um so mehr nimmt die Wahrscheinlichkeit für einen Zusammenstoß der Neutronen mit einem Wasserstoffatom zu. Die sich dadurch ergebende Abbremsung ist aber die entscheidende Voraussetzung für eine weitere Spaltung (sog. Moderation). Bei dem Sättigungszustand im ABWR (70,7 bar) beträgt der Dichteunterschied zwischen Wasser und Dampf rund 0,05. Mit anderen Worten: Sind ungefähr erst 5% der Wassermasse in einem Kanal verdampft, ist dieser praktisch schon vollständig mit Dampf gefüllt. Damit man überhaupt eine ausreichende Moderation erzielen kann -- gemeint ist, genug flüssiges Wasser im Kanal vorhanden ist -- sind nahezu 20 Umläufe erforderlich. Hier kommen die internen Umwälzpumpen ins Spiel: Der ABWR hat davon 10 Stück mit je 8300 m^3/h Förderleistung. Sie können die Dampfblasen förmlich aus den Kanälen herausspülen und sind somit das "Gaspedal" des Siedewasserreaktors. Im Bereich von ca. 65% bis 100% übernehmen nur sie die Leistungsregelung. Die Leistung des Reaktors hängt quasi an der Pumpendrehzahl. Der ABWR ist für Leistungsänderungen von 1% pro Sekunde zugelassen. Ein Gas und Dampf Kombikraftwerk wirkt dagegen wie ein alter Trabant. Es ist lustig zu beobachten, wie manche "Umweltschützer" schon die Zukunft ihrer "CO2-freien Stromwirtschaft" in der Kombination aus Kernkraftwerken und Windmühlen auf dem Meer sehen. Die Propaganda von den notwendigen "flexiblen Gaskraftwerken" wird jedenfalls nur noch von bildungsfernen Kreisen nachgeplappert. In GB sieht umgekehrt die Wind-auf-dem-Meer-Lobby in neuen Kernkraftwerken bereits die einzige Überlebenschance. Deutschland demonstriert ja gerade eindrucksvoll, wie hoch die Folgekosten (Regelung, Netzausbau, Speicher usw.) sind, wenn man sich als "Windpark in der Nordsee" nicht schmarotzend an ein Kernkraftwerk anhängen kann. Bleibt nur abzuwarten, bis die Kapitalgeber erkannt haben, wieviel Uranbrennstoff man für die Baukosten eines Windparks kaufen könnte...
Der Reaktordruckbehälter
Der ABWR ist das vorläufige Endstadium einer jahrzehntelangen Evolution der Siedewasserreaktoren: Es ist gelungen, alle zur Dampferzeugung notwendigen Baugruppen in einen Behälter mit einem Durchmesser von 7,4 m und einer Höhe von 21m unter zu bringen. Dies erlaubt nicht nur die Fertigung in einer Fabrik, sondern ist auch ein wesentlicher Grund für den enormen Sicherheitsgewinn. Mußte man bei der "Fukushima-Generation" noch von etwa einer Kernschmelze in 20.000 Betriebsjahren ausgehen, beträgt die Häufigkeit beim ABWR nur noch eine Kernschmelze in über sechs Millionen Betriebsjahren. Damit kein Mißverständnis entsteht: Wahrscheinlichkeit heißt nichts anderes als, es kann -- wie beim Lotto -- schon morgen oder auch nie passieren. Lediglich bei sehr großen Stückzahlen (Betriebsjahre, nicht Kalenderjahre) ergibt sich der Durchschnittswert. Gleichwohl bilden solche Berechnungen den Sicherheitsgewinn zwischen zwei Anlagen sehr genau ab. Außerdem ist eine Kernschmelze -- wie Harrisburg und Fukushima gezeigt haben -- zwar eine sehr teure, aber relativ harmlose (keine Todesopfer!) Angelegenheit.
Je weniger Bauteile (Pumpen, Rohrleitungen, Ventile, Dampferzeuger etc.) man hat, je weniger kann kaputt gehen. Je weniger dieser Bauteile räumlich verteilt sind, je geringer ist außerdem die Strahlenbelastung für das Personal.
Der Reaktordruckbehälter ist für alle Einbauten ein sehr sicherer Aufbewahrungsort. Um die Sicherheit zu steigern, ist das Mittelteil, in dem sich der Reaktorkern befindet, aus einem Stück geschmiedet (keine Schweißnähte). Alle Anschlüsse (Speisewasser, Dampf, Notkühlung) befinden sich oberhalb des Reaktorkerns, damit der Kern immer unter Wasser bleibt, auch wenn schwere Leckagen in anderen Baugruppen auftreten.
Der Reaktorkern
Der Reaktorkern bei einem ABWR mit einer Leistung von 1350 MWel besteht aus 872 Brennelementen in einer 10x10 Anordnung der Brennstäbe. Jedes Brennelement ist ein viereckiges Rohr von 4,2 m Länge. Das Wasser kann nur von unten nach oben strömen und jedes Brennelement ist für sich wärmetechnisch ein abgeschlossenes System. Der Kasten aus Zircaloy ist allerdings für Neutronen nahezu vollkommen durchlässig. Dadurch ergibt sich neutronenphysikalisch die Verknüpfung mit allen Nachbarelementen.
Jedes Brennelement in 10x10 = 100 Anordnung besitzt 78 Brennstäbe von ganzer Länge, 14 teilgefüllte Brennstäbe und 2 dicke Wasserstäbe. Berücksichtigt man noch eine unterschiedliche Anreicherung bzw. Vergiftung der einzelnen Brennstofftabletten, aus denen die Brennstäbe zusammengefügt werden, sowie den unterschiedlichen Abbrand im Betrieb, ergibt sich eine schier unendliche Kombinationsmöglichkeit. Sinn und Zweck ist eine möglichst gleichmäßige radiale und axiale Belastung über die gesamte Betriebszeit. Durch geschickte Ausnutzung des Neutronenspektrums während des Betriebs, kann man heute in einem Siedewasserreaktor gegenüber einem Druckwasserreaktor mit rund 15% weniger Verbrauch an Natururan auskommen. Lastfolgebetrieb ist mit beliebigen Tagesprofilen möglich. Die Ladezyklen der Brennelemente können flexibel zwischen 18 und 24 Monaten auf die Bedürfnisse des jeweiligen Energieversorgers abgestimmt werden. Es kann sowohl Plutonium als Mischoxid eingesetzt werden, wie auch die Konversionsrate ("brüten" von Plutonium aus Uran) auf Werte von nahezu 1 (Druckwasserreaktor rund 0,6) getrieben werden.
Die Steuerstäbe
Die Brennelemente sind nicht dicht nebeneinander gestapelt, sondern zwischen ihnen befindet sich ein genau definierter Wasserspalt. In diesen Spalten fahren die Steuerstäbe nach oben. Die 205 Steuerstäbe sind kreuzförmig, sodaß jeweils vier Brennelemente mit ihnen eine Einheit bilden. Sie bestehen aus Edelstahl. In ihnen sind mit Borkarbid oder Hafnium (Neutronengifte) gefüllte und gasdicht verschweißte Röhren eingelassen.
Die Steuerstäbe können vollständig ausgefahren werden. Sie ziehen sich dann in den Raum unterhalb des Kerns, aber innerhalb des Reaktordruckgefässes zurück. Jeder Steuerstab wird durch einen elektrischen Schrittmotor unterhalb des Reaktordruckbehälters angetrieben. Jeder Steuerstab kann damit einzeln, zentimetergenau verfahren werden. Steuerungstechnisch sind die einzelnen Stäbe zusätzlich in Gruppen zusammengefaßt. Ihre Stellung kann damit allen Betriebszuständen und den momentanen Neutronenflüssen angepaßt werden. Hierfür sind 52 feste Messeinrichtungen im Reaktorkern vorhanden. Zusätzlich wird der Abbrand noch auf einem Computer mitgerechnet.
Wird eine Schnellabschaltung ausgelöst, werden alle Steuerstäbe in höchstens 1,7 Sekunden vollständig von unten in den Kern eingeschossen. Zu diesem Zweck werden die elektrischen Antriebe durch hydraulische überbrückt. Die Energie wird aus ständig geladenen Wasser/Stickstoff-Druckspeichern bezogen.
Die Dampftrocknung
Aus den Brennelementen tritt oben ein Gemisch aus Wasser und Dampf im Sättigungszustand aus. Bei diesem Druck ist zwar weniger als 15% der Masse des unten in die Brennelemente eingetretenen Wassers verdampft, dies führt aber zu einem Volumenanteil des Dampfes von über 40%. Dieser Dampf muß abgeschieden werden und das Wasser über den Ringraum des Kerns wieder zum Eintritt zurückgeleitet werden. Zusätzlich wird der entzogene Dampf noch durch "kaltes" Speisewasser ersetzt.
Die Wasserabscheider bestehen aus dreifach hintereinander geschalteten Elementen. In ihnen wird das Wasser rausgeschleudert und fällt durch sein Gewicht nach unten zurück. Der Dampf strömt weiter nach oben.
Ganz oben im Druckbehälter, befinden sich die Dampftrockner. In ihnen wird der Sattdampf durch Blechpakete umgeleitet. Hier werden nicht nur feinste Tröpfchen aufgehalten, sondern durch die Reibung entsteht zusätzliche Wärme, die den Dampf geringfügig überhitzt. Als Nebeneffekt verlängert sich die Verweilzeit des Dampfes im Reaktordruckgefäß durch die langen Wege. Ein beträchtlicher Teil des gebildeten radioaktiven Stickstoffs (N-16 mit t ½ = 7,13 s) kann bereits dort zerfallen.
Die Notkühlung
Der ABWR verfügt über drei redundante und räumlich voneinander getrennte Notkühlsysteme. Dadurch steigt nicht nur die Sicherheit, sondern auch die Verfügbarkeit: Wenn während des Betriebs ein Notkühlsystem gewartet wird, stehen immer noch zwei zur Verfügung.
Ein Siedewasserreaktor ist eine robuste Konstruktion:
- Der Wasserinhalt im Reaktordruckgefäß ist größer als bei einem Druckwasserreaktor. Dies verschafft Reaktionszeit.
- Die Brennelemente sind für einen dauerhaften Siedezustand geschaffen. Die Gefahr in den Zustand des Filmsiedens -- dabei entsteht eine isolierende Dampfchicht auf dem Brennstab -- zu gelangen, ist wesentlich geringer und damit eine Überhitzung (z. B. Teilschmelze von Brennstäben) unwahrscheinlicher.
- Da die Dampferzeugung bereits im Reaktor stattfindet, entfallen eine Menge potentieller Leckstellen. Die Gefahr eines größeren Kühlmittelverlustes reduziert sich auf die Frischdampf- und Speisewasserleitungen.
Die Notkühlung vollzieht sich in der Nachspeisung von ausreichend Kühlwasser. Der Wasserstand muß stets oberhalb des Reaktorkerns liegen. Ist ein auftretendes Leck nur klein, bleibt der Druck im Reaktordruckgefäß noch relativ hoch. Jede Notkühlung verfügt deshalb über eine Hochdruck-Einspeisung. Sollte diese Versagen, kann eine Druckabsenkung auch bewußt über die Abblaseventile herbeigeführt werden. Ist der Druck -- aus welchen Gründen auch immer -- weit genug abgefallen, erfolgt die Nachspeisung aus dem Niederdrucksystem. Damit der Druck im Containment nicht unnötig ansteigt, wird der Dampf in Kondensationskammern niedergeschlagen. Das sind große, mit kaltem Wasser gefüllte Kammern. Die Wasserfüllung wird durch eine Wasseraufbereitung stets auf Speisewasserqualität gehalten, sodaß das Kühlwasser gleichzeitig zur Nachspeisung dienen kann. Da sich diese Kammern innerhalb des Containment befinden, ist diese Wasserreserve sehr gut geschützt. Das Wasser wird beständig über die Kühlkreisläufe des Kraftwerks auf einer niedrigen Temperatur gehalten.
Die Eigenversorgung
Solange alles normal läuft, wird die gesamte vom Kraftwerk benötigte elektrische Energie von der eigenen Produktion abgezweigt. Wenn das Netz kurzfristig zusammenbricht -- Blitzschlag, Sturmschaden, Schaltfehler etc. -- kann die Regelung dies ohne Schnellabschaltung beherrschen: Der Dampf wird an der Turbine vorbei, direkt in die Kondensatoren geleitet. Gleichzeitig nimmt die Regelung die Leistung des Reaktors über die Umwälzpumpen und die Steuerstäbe sanft zurück. Das Kraftwerk läuft nun im Leerlauf und erzeugt nur noch Strom für den Eigenbedarf. Kann das Netz schnell wieder hergestellt werden, kann der Betrieb ohne große Verzögerung wieder aufgenommen werden.
Liegt der Schaden beispielsweise im Generator, kann die Stromversorgung aus dem Netz aufrecht erhalten werden. Ist das Netz ebenfalls zusammengebrochen (Fukushima) müssen die Notstromdiesel übernehmen. Hierfür gibt es drei Notstromdiesel in drei voneinander hermetisch getrennten (Feuerschutz und wasserdicht gegen Wasser von außen und innen) Bereichen innerhalb des Reaktorgebäudes (Schutz gegen z. B. Flugzeugabsturz, Erdbeben etc.). Versagen auch diese, gibt es noch eine Gasturbine im separaten "Notstandsgebäude" (Post-Fukushima). Für alle Gleichstromverbraucher (z. B. Regelung, Computer etc.) gibt es eine überdimensionierte (Post-Fukushima) Batterieanlage zur unterbrechungsfreien Stromversorgung.
Sollten alle Sicherheitssysteme versagen, gibt es noch eine weitere Ebene für alle nicht vorhersehbaren Ereignisse. Unterhalb des Reaktordruckbehälters gibt es einen sog. "Core-Catcher" auf dem sich ein eventuell austretendes Corium ausbreiten könnte (UK-ABWR). Der gesamte Raum unterhalb des Reaktors könnte durch das Wasser aus den Kondensationskammern zusätzlich geflutet werden. Sollte der Druck im Sicherheitsbehälter unzulässige Werte erreichen, kann das Gas kontrolliert und gefiltert über den Schornstein abgelassen werden. Dies ist für alle Menschen, die von einem nicht kalkulierbaren "Restrisiko" ausgehen. Allerdings darf nicht erwartet werden, daß dadurch rechtgläubige "Atomkraftgegner" von ihrem Kampf abgehalten werden. Schließlich hat in Fukushima eine der schwersten Naturkatastrophen in der Menschheitsgeschichte nur zum Totalschaden von vier Reaktoren aus den Anfängen der Kerntechnik geführt -- ohne ein einziges zusätzliches Todesopfer zu verursachen. Genau die ABWR hingegen, haben durch dieses außergewöhnlich schwere Erdbeben keinen Schaden genommen. Ein schlimmer, aber bestens bestandener Praxistest. Wer also immer noch glaubt, in Deutschland ginge es bei Fragen der Kerntechnik nicht um vorgeschobene politische Interessen, dem ist nicht zu helfen.
Ausblick
Im nächsten Teil wird der ESBWR als bisher sicherheitstechnisches "High Light" der Leichtwasserreaktoren behandelt. Er ist in Europa noch nicht in der Diskussion, weil er gerade erst den "Goldstandard der Genehmigungsverfahren" -- eine Zulassung durch die US-Behörden -- erlangt. Dies kann sich aber sehr schnell ändern, wie die neusten Entwicklungen z. B. in Indien zeigen.
Beitrag erschien auch auf: nukeklaus.de
Kommentare zum Artikel
Bitte beachten Sie beim Verfassen eines Kommentars die Regeln höflicher Kommunikation.
Keine Kommentare